
Target Detection Procedures and Elementary Operations for their Parallel

Implementation

An Interim Technical Report for NASA Grant NAG2-1152

"Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation"

Period of the Grant: August 1, 1997 to November 30, 1998

Submitted to

NASA Ames Research Center

Technical Officer: Dr. Leland Stone

Mail Stop: 262-2

Moffett Field, California 94035

by

Rangachar Kasturi and Octavia Camps

Principal Investigators

Departments of Computer Science and Engineering and Electrical Engineering

The Pennsylvania State university

University Park, Pennsylvania 16802

Tel: (814) 863-4254 Fax: (814) 865-3176

E-Malh {kasturi, camps}@cse.psu.edu

Graduate Students:

Tarak Gandhi

Kerry Hartman

Mau-Tsuen Yang

December 26, 1997





Target Detection Procedures,

Operations for their Parallel

and Elementary

Implementation

Tarak Gandhi, Kerry Hartman, Mau-Tsuen Yang,

Rangachar Kasturi, and Octavia Camps

In this writeup, we have described the procedures which could be useful in target detec-

tion. We have also listed the elementary operations needed to implement these procedures.

These operations could also be useful for other target detection methods. All of these oper-

ations have a high degree of parallelism, and it should be possible to implement them on a

parallel architecture to enhance the speed of operation.

1 Preprocessing

This is the first step, which is used to subtract the background and remove clutter as much

as possible.

1.1 Low-Stop Filtering

Useful in removing background in case it is uniform, or slowly varying over space.

Involves subtraction of a low pass-filtered image from the original image (or another

low-pass filtered image with a smaller size, i.e. higher cut-off frequency).

Low pass filter can be implemented by hierarchical (pyramid) method [3] as follows:

The original image is denoted by f(z, y) where (x, y) are the pixel coordinates. This

forms the level 0 of the pyramid, denoted by:

f(0) _ f (1)

The level k + 1 is obtained from level k by low-pass filter h followed by down-sampling.

f(k+l)= ($ 2)(h • f(k)) (2)

At a certain level k = n the process is stopped. The number n determines the size of

the low-pass filter.

g"=f" (3)





Reverseprocessiscarried to obtain level k- 1 from level k by up-sampling, and filtering

by another filter h'

9 (k-t) = h'* ((T 2)9 0:)) (4)

The low-pass filtered output is given by

g = g(o (5)

• Spatial Convolution with 2-D filter is given by:

(f , h)(x,g) = _ [f(x- x',y - Y') + h(x,y)] (6)
xl ,yt

The convolution is usually separable into two I-D convolutions h= and hy where h =

h= * h v.

(f * h" * hv)(x'Y) = _-" [_x' [f(x - x',y- y') + h=(x)] + hv(y') ] (7)
v'

The filter h used for low-pass filtering is given by:

h=(x) = [h=(-1) h_(0) h=(1) h,.(2)] = [1 3 3 1]/8 (8)

The same filter is used for hv(y ). h' is given by reflection of h,; i.e. h(x,y) = h(.x,-y)

and is also separable.

• Down-sampling and up-sampling are given by:

(($ 2)f)(x, y) - f(2x, 2y) (9)

((T 2)f)(z,y) = f(x/2,y/2) for even x,y ;0 otherwise (10)

• More efficient implementations are possible by doing down-sampling before low-pass,

and up-sampling after high-pass. These are known as polyphase implementations [5].

1.2 Morphological Filtering

• Useful in removing large-sized clutter from small-sized objects.

• Involves subtraction between an image and its morphological opening or closing.

fo-/- (fore)

f_=(f •m)- f (11)

• Opening is an erosion followed by dilation, and closing is a dilation followed by erosion.

(f om)=(f _m)_m

(f • m) = (f _ m) _ m (12)





• Dilation and erosionare definedby [4]:

(f • m)(z, y)= max(f(z- z',y- U') + m(z', y')}
x_,yl -

(f G m)(x, y) = min{f(x + x', g + g') - m(x', y')} (13)

where the values of f and m are assumed to be -oc outside the region of interest in

order to make these terms redundant in max or min operations.

• The mask size assumed at present is 5 x 5 but slightly bigger size may be needed.

• If the mask m is separable in dimension, i.e. m = rn, _ m_ the 2-D mask would be

replaced by two 1-D masks, applied one after another.

(f _m)(x,y) = (f em_)_rny

(f @m)(x,y) = (f Om_) Grny

-- m ax{mxax{f (x - x', y- y') + rnx(x') } -I-my(y')} (14)

= min{min{f(x+x',y+y')- rn_(x')} -my(y')} (15)
yl xl

• If m(x', y') = 0 for the whole mask i.e. region of interest, the operations of erosion and

dilation are reduced to max and min operations over the mask.

2 Temporal Integration

This is useful to enhance targets with low signal to noise ratio. We have studied three

approaches for performing temporal integration. These can be applied one after another in

the given order.

2.1 Temporal Averaging

• Initially, a number of frames would be averaged (or summed) to bring the maximum

target image velocity to one pixel per number of summed frames.

• A forgetting factor may be used to give larger weightage to more recent frames.

• May be implemented in recursive or hierarchical fashion.

Recursive implementation:

or

F(x,y;O) =0

F(x,y;t) = f(x,y;t) + aF(z,y;t - 1)

F(x,g;t) = (1 -a)f(x,y;t)+aF(x,y;t- 1)

where

• f(x, g; t) is the value of pixel (x, y) in frame t

(16)

(17)

(is)

3





-c.

1) from the previous frame.

• a is the forgetting factor between 0 (full forgetting) and 1 (no forgetting).

Hierarchical implementation:

• Level 0 represents the original image with to = t as the frame number:

/o(z, _; t0) = /(x, y, t)

F(x,y;t) is the output of the algorithm at frame t obtained using the output F(x,y; t-

(19)

• Level 1 is formed by summing two consecutive images. The frame rate at level 1 is

reduced by half, and the frame number is denoted by tl = to�2 where only even to is

used.

/, (z, y; t,) = f0(x, v; to + 1)+ _/0(x, y; to) (20)

• Level k is formed using level k - 1 as:

.fk(X,y;tk)=h-l(x,y;t_-l+l)+akfk-l(x,y;tk-1);tk=tk--l/2,tk-1 even (21)

This expression is equivalent to the weighted sum of 2_' image frames, from equation

(17) fortk=landt=2 k.

Temporal Shift and Add

This is the generalization of the hierarchical procedure for temporal averaging to ac-

count for the target image velocity.

• For simplicity, we consider the target velocity to lie between 0 and 1 pixel per frame

in x and y direction. Procedure for negative pixel velocity would be the mirror image

of this.

• At each hierarchical level k, the velocity can be resolved into 2 k sub-intervals per

dimension, each called (u_, vk) representing the velocity around (u, v) = (uk, vk)/2 k.

Note that these sub-intervals are not mutually exclusive, but overlap each other.

• The frame rate is reduced by half at each stage, so that the frame number tk = t/2 k

for t divisible by 2 I'.

• Hence, we have 2 _ x 2j' images corresponding to velocities from 0 to 1 in each dimension.

The actual number is 4 times this, to account for negative velocities in each dimension.

A pixel (x, y) in image (uk, v_) representing velocity around (uk, vk)/2 j', at frame tk is

• denoted by .fk(x, y; uk, vk; t).

• Images at level k are formed by shifting appropriately, and adding images at level k - 1

according to the following equation:

. I y!fk(z,y;uk, vk;tk) fk-L(z,y;uk-_,V*-l,t*-l+l)+akfk-L(Z--Uk-l,Y - k-l;Uk-l,C'k-t;tk-l)

(2__)

4





where

(.,___,vk__)= (L.k/2J,Lu_/2J)
= (23)

At each level, the frame rate reduces by half, but the number of states increases 4 times.

Hence, the memory and computational complexity increases rapidly with the number of

frames integrated and the process should be stopped before there is a resource crunch.

However, if sub-pixel velocity resolution is required, or the SNR is low, this stage could

be helpful.

Fig. 1 shows the shift and add process for one dimension. This can be generalized to

two dimensions as shown in Fig. 2.

Dynamic Programming

To replace the temporal shift and add, after complexity has increased, dynamic pro-

gramming can be used.

Dynamic programming method was used for target detection by Barniv [2] and Arnold et al. [1].

This process does not increase the number of states or complexity any further. Instead

of increasing the number of states at the higher level, a 'maximum' operation is used.

This process can be implemented recursively as:

F(x, y; un,vn;O)= 0 (24)

±1 ±1

max max f (x - un - i, y - v,_ - j; un, v,_; t_ - 1)f(x,y;u_,vn;t.) =/(z, y;_., v.;t.)+_ n
i=O j=0

(25)
where f(x, y; u,_, vn; tn) is the value of pixel (x, y) in frame tn, F(x, y; un, vn; t_,) is the

output of the algorithm at frame tn obtained using the output F(x', y'; u,_, vn; t - 1)

from the previous frame, and range 4-1 is applied, so that u,_ and i as well as v_, and j

have same sign.

3 Spatial Integration

• All the above processes can be carried out at various levels of resolution to enable

efficient detection of targets of all sizes.

• The process involves convolution and down-sampling as performed in the hierarchical

low-pass filter described in Sec. 1.1.

5





4 Elementary Operations

The following elementary operations would be needed for the implementation of the above

procedures, as well as some more algorithms.

1. Spatial Convolution with 2-D or 1-D filter: This is useful for low-pass filtering and

other linear filtering applications. The equations are given in Sec. 1.1

2. Morphological dilation and erosion with 2-D or 1-D masks: This is useful for the

morphological filtering to remove clutter. Maximum operator in dynamic programming

can also be implemented as a special case of morphological dilation. The equations are

given in Sec. 1.2.

3. Spatio-Temporal Convolution: This is the convolution performed across two dimensions

of space and one of time. In most cases, this would be separable into 3 parts: This can

be useful for computing optical flow using spatial and temporal gradients.

(f . h)(z,y;t) = _ If(x- x',y-y',t- t')h(x',y',t')] (26)
z' ,yl ,t'

In separable case,thisbecomes:

(f . h)(x,y;t) = (f . h, • hv. ht)(x,y,t)

4. Pointwise unary operations: This is a pointwise function of a single image. No neigh-

boring pixels are used to perform the operation. Examples of such operations include

scaling, square, square-root, etc. These could be useful for many different algorithms.

g(x,y) = A(f(x,y)) (28)

5. Pointwise binary operations: This is a pointwise binary function of corresponding pixels

in two images. Examples of these operations include add, subtract, multiply, divide,

max, min, etc.

g(x,y) = B(fl(x,y),f2(x,y)) (29)

6. Image warping: This is used to transform an image from one coordinate system to
another. It is based on the coordinate transformation:

(x', y') = T(x,y) or (:r, y) = T-t(x',y') (30)

where (x,y) and (x',y') denote the coordinates in the original and the transformed

image. If T-' is an integer mapping, we have:

g(z',y') = f(T-'(z',y')) (31)

If T -t is a real mapping, we can use bilinear transformation to interpolate the value

of g(z', v').

This list of operations is not exhaustive; we may come across more operations ms we

explore methods for target detection.

6





References

[1] J. Arnold, S. Shaw, and H. Pasternack. Efficient target tracking using dynamic pro-

gramming. IEEE Trans. on Aerospace and Electronic Systems, 29(1):44-56, January

1993.

[2] Y. Barniv. Dynamic programming solution for detecting dim moving targets. IEEE

Trans. on Aerospace and Electronic Systems, 21(1):44-56, January 1985.

[3] P. J. Butt. Fast filter transforms for image processing. Computer Vision, Graphics and

Image Processing, 16:20-51, 1981.

[4] R. C. Gonzalez and R. C. Woods. Digital Image Processing. Addison-Wesley, Reading,

MA, 1992.

[5] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press,

Wellesley, MA, 1996.

7





J
L_

E

cj _ e-

-o _ e.i
¢_ [-- <

._ _ o
"0
_J

._ _o _ _

o _: ._

_°_-!
__ o_

'_ _ r;

__ ¢,,,

_ _ _ '_
0

o _ _ __
--: eg -_





i

m

E




